GAME JOBS
Contents
From Research To Games: Interacting With 3D Space
 
 
Printer-Friendly VersionPrinter-Friendly Version
 
Latest Jobs
spacer View All     Post a Job     RSS spacer
 
June 7, 2013
 
Sledgehammer Games / Activision
Level Designer (Temporary)
 
High Moon / Activision
Senior Environment Artist
 
LeapFrog
Associate Producer
 
EA - Austin
Producer
 
Zindagi Games
Senior/Lead Online Multiplayer
 
Off Base Productions
Senior Front End Software Engineer
spacer
Latest Blogs
spacer View All     Post     RSS spacer
 
June 7, 2013
 
Tenets of Videodreams, Part 3: Musicality
 
Post Mortem: Minecraft Oakland
 
Free to Play: A Call for Games Lacking Challenge [1]
 
Cracking the Touchscreen Code [3]
 
10 Business Law and Tax Law Steps to Improve the Chance of Crowdfunding Success
spacer
About
spacer Editor-In-Chief:
Kris Graft
Blog Director:
Christian Nutt
Senior Contributing Editor:
Brandon Sheffield
News Editors:
Mike Rose, Kris Ligman
Editors-At-Large:
Leigh Alexander, Chris Morris
Advertising:
Jennifer Sulik
Recruitment:
Gina Gross
Education:
Gillian Crowley
 
Contact Gamasutra
 
Report a Problem
 
Submit News
 
Comment Guidelines
 
Blogging Guidelines
Sponsor
Features
  From Research To Games: Interacting With 3D Space
by Joseph LaViola Jr. [Design, Programming, Art, Serious]
7 comments Share on Twitter Share on Facebook RSS
 
 
April 22, 2010 Article Start Previous Page 5 of 6 Next
 

Scaled-World Grab

The scaled-world grab technique (see Figure 3) is often used with occlusion selection and was first discussed in 1997.



The idea is that since you are selecting the object in the image plane, you can use the ambiguity of that single image to do some magic. When the selection is made, the user is scaled up (or the world is scaled down) so that the virtual hand is actually touching the object that it is occluding.

If the user does not move (and the graphics are not stereo), there is no perceptual difference between the images before and after the scaling.

However, when the user starts to move the object and/or his head, he realizes that he is now a giant (or that the world is tiny) and he can manipulate the object directly, just like the simple virtual hand.

To implement scaled-world grab, correct actions must be performed at the time of selection and release. Nothing special needs to be done in between, because the object is simply attached to the virtual hand, as in the simple virtual hand technique. At the time of selection, scale the user by the ratio (distance from eye to object / distance from eye to hand).

This scaling needs to take place with the eye as the fixed point, so that the eye does not move, and should be uniform in all three dimensions. Finally, attach the virtual object to the virtual hand. At the time of release, the opposite actions are done in reverse. Re-attach the object to the world, and scale the user uniformly by the reciprocal of the scaling factor, again using the eye as a fixed point.


Figure 3. An illustration of the scaled-world grab technique.

World-in-Miniature

The world-in-miniature (WIM) technique uses a small "dollhouse" version of the world to allow the user to do indirect manipulation of the objects in the environment (see Figure 4). Each of the objects in the WIM are selectable using the simple virtual hand technique, and moving these objects causes the full-scale objects in the world to move in a corresponding way. The WIM can also be used for navigation by including a representation of the user, in a way similar to the map-based travel technique, but including the third dimension.


Figure 4. An example of a WIM. This image was taken in 1996.

To implement the WIM technique, first create the WIM. Consider this a room with a table object in it. The WIM is represented as a scaled down version of the room, and is attached to the virtual hand. The table object does not need to be scaled, because it will inherit the scaling from its parent (the WIM room). Thus, the table object can simply be copied within the scene graph.

When an object in the WIM is selected using the simple virtual hand technique, first match this object to the corresponding full-scale object. Keeping a list of pointers to these objects is an efficient way to do this step. The miniature object is attached to the virtual hand, just as in the simple virtual hand technique.

While the miniature object is being manipulated, simply copy its position matrix (in its local coordinate system, relative to its parent, the WIM) to the position matrix of the full-scale object. Since we want the full-scale object to have the same position in the full-scale world coordinate system as the miniature object does in the scaled-down WIM coordinate system, this is all that is necessary to move the full-scale object correctly.

 
Article Start Previous Page 5 of 6 Next
 
Top Stories

image
Microsoft's official stance on used games for Xbox One
image
Keeping the simulation dream alive
image
A 15-year-old critique of the game industry that's still relevant today
image
The demo is dead, revisited
Comments

Dustin Chertoff
profile image
I feel like I took a class on this a couple years ago. =) (I'm a former UCF student, graduated there last year, and Joe was on my dissertation committee - k, disclosure complete.)



Seriously though, this is good stuff that game developers interested in 3DUI should be aware of. Great article and it puts everything in a nice, centralized location. And it serves as a great refresher for those already familiar with the concepts.

Simon T
profile image
@ Tim



Research informs creation.

Isaiah Williams
profile image
Research creates information.

John Mawhorter
profile image
This article is highlighting for me the fact that 3D UIs and Virtual Worlds are difficult to use and that the mouse and keyboard are by far the superior input device for most tasks. Seriously, controlling my movement by turning my head? This is uncomfortable on a basic level. Also the magical versus realist distinction and your constant use of "natural" and "immersion" are pretty silly.

John Mawhorter
profile image
Not that this isn't a useful starting point for thinking about using these devices in games, but there are many of these techniques that don't work in a time-intensive situation (ie most real-time video games) or when moving. And there's also the problem that head-tracking is needed for some of these, which most of the controllers won't provide. And the real problem is that the virtual world research mostly seems to be based on VR environments that are expensive and complicated, while also being used for specific tasks that aren't really very game-like (military training simulators excepted). If there was a real academic VR-Game research community it would be great.

Dustin Chertoff
profile image
@Tim Carter



Research does not guarantee that the results of the research are immediately applicable towards creating commercial products. In many cases, research exists solely for the sake of figuring out the truth of the very small part of the world the researcher is interested in. But at no point, is research the antithesis of creation.



Creation cannot exist in a vacuum. Creation must be informed through observations of the world. How do you know what problem needs a solution to be created? How do you know how to build the solution? How do you test that your solution works? This is all research. Creation is the process of developing an informed response based upon the questions asked and answered through the research process. Development cannot exist without research to inform what to develop, and research cannot exist without development defining the problems that need to be researched.



And while punk rock pioneers could not play their instruments with the same technical prowess of their contemporaries, they had performed plenty of research regarding the type of music out there. They felt that the music did lot let them express themselves the way they wished to express themselves (the problem). As a result, they created a new form of musical expression.



@John Mawhorter



Yeah, many of the techniques right now are very cumbersome for VR, let alone for gaming. Even the best VR equipment would choke trying to provide the same quality of experience you can get with AAA PC game. But the technology is getting there, slowly... One of the issues though, is the mindset that great games have to fit the "sit in one spot for 3+ hours" paradigm. A new genre of games based around 10-15 minute immersive experiences can emerge (where immersion refers to both physical and psychological immersion). Just like major game developers balked at the power of social gaming, only to realize now that it is a multi-billion dollar industry, the same can be said of the immersive casual game.



The Wii showed that people will buy the tech, (if not 3rd party games). It was enough to make MS and Sony play catch-up with Natal/Move. This tech is not currently suited for AAA FPS games, but it is great for other genres. It's unwise (from a business perspective) to ignore this nascent market segment because it can't be applied to the current style of AAA game. Let the tech be incorporated and refined in the new genres, so that the mature version can be added to traditional blockbuster style games.

Ruthaniel van-den-Naar
profile image
For me nice summary and something between science and design, I hate overly scientific and pieces, this is ideal combanation.


none
 
Comment:
 




UBM Tech