Gamasutra: The Art & Business of Making Gamesspacer
Postmortem: Naughty Dog's Jak and Daxter: the Precursor Legacy
View All     RSS
October 22, 2014
arrowPress Releases
October 22, 2014
PR Newswire
View All





If you enjoy reading this site, you might also want to check out these UBM Tech sites:


 
Postmortem: Naughty Dog's Jak and Daxter: the Precursor Legacy

July 10, 2002 Article Start Previous Page 2 of 3 Next
 

What Went Right

1. Scheduling. Perhaps Naughty Dog's most important achievement is making large-scale games and shipping them on time, with at most a small amount of slip. This is an almost unheard of combination in the industry, and although there is a certain amount of luck involved, there are valid reasons to explain how Naughty Dog has managed to achieve this time and again.

Experience will tell you it's impossible to predict the precise details of what will be worked on more than a month or two in advance of doing it, yet many companies fall into the trap of trying to maintain a highly detailed schedule that tries to look too far into the future. What can't be effectively worked into these rigid schedules is time lost to debugging, design changes, over-optimism, illness, meetings, new ideas, and myriad other unpredictable surprises.

At Naughty Dog, we prefer a much more flexible, macro-level scheduling scheme, with milestone accomplishments to be achieved by certain dates. The schedule only becomes detailed for tasks that will be tackled in the near future. For example, a certain level will be scheduled to have its background modeled by a certain date. If the milestone is missed, then the team makes an analysis as to why the milestone wasn't achieved and changes plans accordingly: the background may be reduced in size, a future task of that artist may be given to another artist to free up more time, the artist may receive guidance on how to model more productively, or some future task may be eliminated.


Color Key for Forbidden Jungle. The game required two full-time conceptual artists for nearly two years of production.

In the case of Jak & Daxter, we used the knowledge we'd gained from creating the Crash Bandicoot games to help estimate how long it should take to model a level. As we modeled a few levels, however, we soon realized that our original estimates were far too short, and so we took appropriate actions. If we had attempted to maintain a long-term, rigidly detailed schedule, we would have spent a lot of time trying to update something that was highly inaccurate. Beyond this being a waste of time, the constant rescheduling could have had a demoralizing effect on the team.

2. Effective localization techniques. We knew from the start that we were going to sell Jak & Daxter into many territories around the world, so we knew we would face many localization issues, such as PAL-versus-NTSC, translations, and audio in multiple languages. Careful structuring of our game code and data allowed us to localize to a particular territory by swapping a few data files. This meant we only had to debug one executable and that we had concurrent development of all localized versions of the game.

All of our animation playback code was written so that it could automatically step animations at a rate of 1.2 (60fps/50fps) when playing in PAL. We also used a standardized number of units per second so that we could relate the amount of time elapsed in a game frame to our measure of units per second. Once everything was nice and consistent, then timing-related code no longer had to be concerned with the differences between PAL and NTSC.

Physics calculations were another issue. If a ball's motion while being dropped is computed by adding a gravitational force to the ball's velocity every frame, then after one second the ball's velocity has been accelerated by gravity 60 times in NTSC but only 50 times in PAL. This discrepancy was big enough to become problematic between the two modes. To correct this problem, we made sure that all of our physics computations were done using seconds, and then we converted the velocity-per-second into velocity-per-game-frame before adding the velocity to the translation.

3. Seamless world, grand vistas, and no load times. We knew very early on in the development of Jak & Daxter that we wanted to immerse the player within one large expansive world. We didn't want to stall the game with loads between the various areas of that world.

Jak & Daxter's designers had to overcome many obstacles to achieve our open environments. They had to lay out the levels of the world carefully so that levels could be moved in and out of memory without stalling gameplay or causing ugly visual popping. They also had to create challenges that would engage the player and maintain the player's interest, even though the player could roam freely around the world. And they had to tune the challenges so that the difficulty ramped up appropriately, without giving players the impression that they were being overly directed.

The programmers had to create tools to process interconnected levels containing millions of polygons and create the fast game code that could render the highly detailed world. We developed several complex level-of-detail (LOD) schemes, with different schemes used for different types of things (creatures versus background), and different schemes used at different distances, such as simplified models used to represent faraway backgrounds, and flats used to represent distant geometry. At the heart of our LOD system was our proprietary mesh tessellation/reduction scheme, which we originally developed for Crash Team Racing and radically enhanced for Jak & Daxter.

The artists had the burden of generating the enormous amount of content for these environments. Their task was complicated by the very specialized construction rules they had to follow to support our various renderers. Support tools and plug-ins were created to help the artists, but we relied on the art staff to overcome many difficulties.

4. Camera control. From the initial stages of Jak & Daxter, we looked at the various camera schemes used in other games and came to the depressing conclusion that all existing camera schemes had serious issues. We suspected that making a well-behaved camera might be an unsolvable 3D problem: How could one possibly create a camera that would maneuver through a complex 3D world while behaving both unobtrusively and intelligently?

Only fools would believe that all problems have a solution, so, like idiots, we decided to give it a try. The resulting camera behaved extremely well, and although it had its limitations, it proved the problem does indeed have a solution. Jak can jump through trees and bushes, duck under archways, run between scaffolding, scale down cliffs, and hide behind rocks, all with the camera unobtrusively keeping the action in view.

We wanted the player to be able to control the camera, but we did not want to force the player to do so. Players can use the second joystick to maneuver the camera(rotating the camera or moving it closer to or farther from Jak), but we were concerned that some people may not want to manipulate the camera, and others, such as children, may not have the required sophistication or coordination. Therefore, we worked very hard at making the camera do a reasonable job of showing players what they needed to see in order to complete the various challenges. We accomplished this through a combination of camera volumes with specially tuned camera parameters and specialized camera modes for difficult situations. Also, creatures could send messages to the camera in order to help the camera better show the action.

This may sound funny, but an important feature of the camera was that it didn't make people sick. This has been a serious problem that has plagued cameras in other games. We spent a bit of time analyzing why people got sick, and we tuned the camera so that it reduced the rotational and extraneous movement that contributed to the problem.

Perhaps the greatest success of the camera is that everyone seems to like it. We consider that a major accomplishment, given the difficulty of the task of creating it.

5. GOAL rules! Practically all of the run-time code (approximately half a million lines of source code) was written in GOAL (Game Object Assembly Lisp), Naughty Dog's own internally developed language, which was based on the Lisp programming language. Before you dismiss us as crazy, consider the many advantages of having a custom compiler.

Lisp has a very consistent, small set of syntactic rules involving the construction and evaluation of lists. Lists that represent code are executed by evaluating the items that are in the list; if the head of the list is a function (or some other action), you could think of the other items in the list as being the parameters to that function. This simplicity of the Lisp syntax makes it trivial to create powerful macros that would be difficult or impossible to implement using C++.

Writing macros, however, is not enough justification for writing a compiler; there were features we felt we couldn't achieve without a custom compiler. GOAL code, for example, can be executed at a listener prompt while the game is running. Not only can numbers be viewed and tweaked, code itself can be compiled and downloaded without interrupting or restarting the game. This allowed the rapid tuning and debugging, since the effects of modifying functions and data structures could be viewed instantaneously.

We wanted creatures to use nonpreemptive cooperative multi-tasking, a fancy way of saying that we wanted a creature to be able to execute code for a while, then "suspend" and allow other code to execute. The advantage of implementing the multi-tasking scheme using our own language was that suspend instructions could be inserted within a creature's code, and state could be automatically preserved around the suspend. Consider the following small snippet of GOAL code:

 

(dotimes (ii (num-frames idle))
(set! frame-num ii)
(suspend)
)

 

This code has been simplified to make a point, so pretend that it uses a counter called ii to loop over the number of frames in an animation called idle. Each time through the loop the animation frame is set to the value of ii, and the code is suspended. Note that the value of ii (as well as any other local variables) is automatically preserved across the suspend. In practice, the preceding code would have been encapsulated into a macro such as:

 

(play-anim idle
;; Put code executed for each time..
;; through the loop here.
)

 


There are other major compiler advantages: a unified set of assembly op-codes consistent across all five processors of the Playstation 2, register coloring when writing assembly code, and the ability to intermix assembly instructions seamlessly with higher-level code. Outer loops could be written as "slower" higher-level code, while inner loops could be optimized assembly.


Article Start Previous Page 2 of 3 Next

Related Jobs

Bohemia Interactive Simulations
Bohemia Interactive Simulations — ORLANDO, Florida, United States
[10.22.14]

Game Designer
Petroglyph Games
Petroglyph Games — Las Vegas, Nevada, United States
[10.21.14]

Illustrator / Concept Artist
DoubleDown Interactive
DoubleDown Interactive — Seattle, Washington, United States
[10.21.14]

Game Designer
Zindagi Games
Zindagi Games — Camarillo, California, United States
[10.21.14]

MOBILE Art Director






Comments



none
 
Comment: