Gamasutra is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Gamasutra: The Art & Business of Making Gamesspacer
Educational Feature: A History and Analysis of Level Design in 3D Computer Games - Pt. 2
arrowPress Releases
December 5, 2020
Games Press
View All     RSS







If you enjoy reading this site, you might also want to check out these UBM Tech sites:


 

Educational Feature: A History and Analysis of Level Design in 3D Computer Games - Pt. 2


April 29, 2006 Article Start Previous Page 3 of 4 Next
 

Engine Refinements, Storytelling and Interactivity

The move into a fully three dimensional world with Quake was probably as momentous an occasion as the release of the original Wolfenstein 3D or Doom, a turning point in the development of three-dimensional first person titles. Many companies would license Quake engine technology in order to construct their own games around its powerful rendering technologies, just as companies did with Doom. In addition to permitting faster development of games, this licensing of engine technology had a second, less recognized effect. It allowed the licensees to concentrate more of their energies on the design of the actual game, instead of focusing as heavily on technical concerns. That is not to say that the engines were simply plug and play, but that programmers were spending more time modifying the engine to suit their needs, instead of designing whole new engines from the ground up. As the 1990’s came to a close, a slew of new titles arrived on the shelves, with many offering singleplayer innovation.

On May 28th, 1998, Digital Extremes and Epic Games released Unreal, a title that had been under development for four years (Grossman, 91). Unreal had impressive graphical capabilities, supporting very detailed textures, connected linear levels and fairly advanced artificial intelligence for the enemies. This resulted in moments where enemies would narrowly dodge projectiles at the last moment, a nasty surprise to players.

Level design wise, the game featured moments demonstrating nearly cinematic pacing, such as the players first encounter with a Skarrj warrior. Like Quake, Unreal featured a full three-dimensional engine, but supported more complex environments. Unreal also required levels to be constructed in a much different way than Quake engine titles. In Quake based titles, a level starts empty and must be assembled from various geometric shapes, called brushes. These brushes can be manipulated to alter size and shape, as well as other features, resulting in what can be called additive level construction. Unreal engine based projects, on the other hand, use a subtractive model, where the world starts full and level designers create empty spaces to serve as rooms, then add other geometry as details, much like a sculptor whittles down a block of clay or marble to create a sculpture. Level design for Quake engine titles were more akin to working with Legos that could be stretched and modified.

Unreal also featured much more natural environments. While Duke 3D did a good job of simulating cities and urban environments, Unreal was adept at creating believable and lush pseudo-tropical landscapes. The levels featured effects such as waterfalls, transparent water, colored lighting and greater interactivity with objects such as boxes, which could be pushed and used to create stairs. While the actual game offered little new, the impressive use of graphical effects served to add yet another layer of depth to the virtual world.

While the Unreal and Quake engines would become the two dominant engines used for the creation of First Person Shooters for computer games, they would not be the only engines developed. Several companies, such as Looking Glass, would continue to develop their own engines from scratch.

The Dec 3, 1998 release of Thief: The Dark Project and the August 1999 release of System Shock 2, developed nearly simultaneously, marked the first implementations of the Dark engine. Thief was best described as a First Person Sneaker, where the object of the game was not to loudly blast through enemies, but instead to avoid detection while pilfering valuable or interesting objects. The storyline was involved and played out in animated cut scenes before and after each level, setting the stage for the action to come. The cut scenes were well done, but it was the gameplay that was novel, encouraging players to hide in the shadows and use a variety of arrows to ease their path. Thief featured truly dynamic lighting, with almost every light source able to be doused, a vital component of the gameplay. Thief is, at the very least, the spiritual ancestor of popular modern titles such as the Splinter Cell series from UbiSoft. Thief also illustrated that there was a market for titles played from a first person perspective other than violent slaughter-fests.

Thief also relied heavily on audio as an element of player involvement. In most previous titles, enemies were essentially silent unless they were attacking the player. In Thief, one of the best ways to determine the location of an enemy was by their footsteps. Further, players could use the sounds made by the NPC’s to determine how aware or suspicious they were; casual whistling could indicate they were unaware of anything amiss, while yells for help would ensue should the player be spotted. Players could also use these aural capabilities to their advantage, throwing objects or using special noisemaker arrows to distract opponents. This use and recognition of audio as an important part of the immersive experience was a significant step forward, adding another vital element to level design; the placement and use of ambient audio. While ambient audio had been used in previous projects from Doom to Duke Nukem 3D and beyond, Thief was the first title to make audio a central element of the gameplay (Grossman 175-176).

System Shock 2, developed by both Irrational Games and Looking Glass Studios, was a sequel to the innovative, if overlooked System Shock. System Shock 2 continued the story of System Shock, with the player taking the role of the sole survivor of a terrible disaster aboard two ships deep in space. The player awakens with no knowledge of past events, and through audio logs and e-mails must piece together what happened aboard the ships.

Like it’s predecessor, System Shock 2 was a difficult title to categorize, having elements in common with role playing games, action games like Doom and adventure games. More generally, the game could be categorized as an action horror survival game, as the player had no idea why the crews of the ships were dead, and seldom enough ammunition to simply blaze through any opponents. Item placement was a critical element of level design in System Shock 2, as designers were careful to never give the player an overwhelming amount of resources. Players were required to carefully horde ammunition and supplies, as well as manage various ammunition types. As in System Shock, certain weapons and ammunition types worked best against certain enemies, so players had to be aware that they could encounter any of a variety of enemies at any time, and that using a more effective ammunition type would help conserve their meager resources.

Problems or “puzzles” in System Shock 2 frequently had multiple solutions that would depend on the various skills of the player character and their playing style. Enemies could be killed or snuck by, doors opened by finding a key code or by hacking the lock. Players could disable cameras by shutting down a security system, destroying the camera or merely sneaking by it when the camera was pointed elsewhere. As in previous games from Looking Glass, players were usually rewarded for careful play and exploration of the world, receiving upgrade chips that could be spent to improve character abilities in an RPG style system. The game also allowed characters to do research on enemies using a variety of simple chemicals. This research would then yield distinct knowledge or combat advantages over opponents.

System Shock 2 also made extensive use of scripted sequences, a concept that would be fleshed out more fully in Half-Life. As opposed to pre-rendered movies advancing the story, System Shock 2 chose to display almost all events inside the game engine itself, helping to maintain player immersion which could easily be broken by the interjection of pre-rendered movies. Many of these events were highly unexpected, such as the player’s first encounter with a “ghost” of a crewmember. While the models of characters and objects would later be criticized by some players as primitive, the attention paid to character and level design, as well as the vital role of sound effects and spoken dialogue made System Shock 2 a highly successful and critically acclaimed title. The game is still considered by many to be one of the best examples of the genre and of game story in general.

System Shock 2 is joined in this pantheon by another game that has direct ties to
Ultima Underworld and System Shock; Ion Storm Austin’s Deus Ex. Released in late June of 2000, Deus Ex was set in a dystopian future where conspirators and terrorists have turned the United States into a fractious, diseased and crumbling nation. Levels were set to resemble recognizable locations such as Liberty Island and the Statue of Liberty, Battery Park in New York and other areas throughout the world. The player Avatar, J.C. Denton, was a nano-augmented agent for a United Nations anti-terrorist group.

The game, designed by former Looking Glass developer Warren Spector, had much in common with titles like System Shock, System Shock II and Ultima Underworld. The player’s character could define an early set of skills and abilities that later could be modified through a combination of experience points and “augmentation canisters”, which would add new functions to a player, such as the ability to increase their strength or to become resistant to radiation. Augmentations could also be upgraded using upgrade canisters, a separate system from the experience or “skill” points system.

In addition, Deus Ex allowed players to use a variety of play styles and tactics to achieve in-game objectives. Many objectives had several different approaches that would all be suitable, allowing players to exercise their discretion and giving the impression of a great deal of freedom in what was still a largely linear game world. For instance, when confronted with a locked door in most games, players would know they would have to find the key or a switch to open it. Deus Ex could allow players several options, such as destroying the door with explosives, picking the lock, hacking the security system to open the door or finding a way around the door, typically through a ventilation or sewer system, or by navigating other nearby rooms.

Naturally, such freedom came at a considerable cost for level designers, necessitating massive amounts of pre-production and planning for level design and other systems (Grossman 200-201, 205-206). Level designers would have to take into account the various augmentations and skills that a player might have and provide a sufficient variety of tools for a player never to become completely stuck in a dead-end merely because they didn’t have the requisite skill level to hack a computer or pick a lock. This meant that other solutions had to be found, such as key rings containing necessary keys for players to use.

The issues faced by Deus Ex serve as both an example of how good planning can result in better level design, as well as a cautionary tale about the difficulties of giving players choices. While many players clamor for more inventiveness and freedom in games, implementation of such abilities presents serious challenges for designers, necessitating, as was done with Deus Ex, early functional prototyping of levels and other resources. Deus Ex was richly rewarded for its efforts, garnering a great deal of praise both for its comparatively open-ended gameplay and its ability to allow players to play the game in a manner that fit their personalities. The game also received considerable praise for its conversational system, allowing players to choose from a number of pre-scripted conversational choices, each of which would affect the course of the conversation with an NPC. This furthered the sense of immersion and the impression that player choices would have tangible effects on their ability to progress, as well as NPC’s perception of them. This system, allowing players to actually select from conversational choices was an ideal method for exposition and character development, but not the only approach to player and NPC interaction.

 


Deus Ex
Eidos' Deus Ex

 

A company that took a different approach nearly two years before Deus Ex was Seattle based Valve Software. Released on November 20th, 1998 after more than a year delay, Half-Life put players in the shoes of Gordon Freeman, a research scientist at a top secret government facility in the fictional location of Black Mesa, New Mexico in the United States. Half-Life is remarkable in many ways, but one of the most obvious is the method used to introduce the player to the world. Typically, players are thrust into their characters immediately after a disaster has occurred rendering all other friendly non-player characters dead or dying, or at the very least in need of help. This is a storytelling device that serves to cover up the fact that the technology for players to interact believably with Non-Player Characters was, at best, limited. Indeed, this idea of the limited capability for players to interact with “friendly” characters had become something of an accepted fact in many titles.

Half-Life took a different and arguably more cinematic approach to their storytelling. Players began on a highly detailed tram ride into the Black Mesa Research Center, with the tram ride serving as an introduction to Black Mesa at the beginning of a normal work day. As would be expected, the player is completely unarmed throughout this portion of the game, a dramatic difference from practically all other titles. The player would then have to follow verbal prompts and instructions from Non-Player Characters in order to achieve their goals. The characters featured a form of lip syncing, similar to the appearance of a puppet, that caused their mouths to move in approximations of the proper shapes for certain sounds, giving the impression that the characters were actually human and speaking to you. Players would then proceed down to a test chamber where they themselves would become responsible for the initiating event that would lead to the disaster at the facility. The concept of showing players the world before the disaster, letting them become familiar with it in its natural state, served to give players a reference point by which to compare the following chaos and disorder.

The player would then have to move through the facility, frequently relying on Non-Player characters to open doors and provide medical attention, as well as supply advice and hints as to the next course of action that the player should take. Valve, also realizing that the technology was not yet sufficient to allow back and forth conversation with NPC’s, chose to make Gordon completely mute, and simply have characters speak to him directly. With careful writing the designers could give the impression that the conversation was at least a natural one, if decidedly lopsided.

Half-Life also featured an excellent implementation of level transitions, similar to those used by Unreal. Instead of an intervening screen between levels, Half-Life would load the next level dynamically when the player reached the end of one map, displaying a small “loading” graphic before resuming the game. The transitions were as seamless as possible, allowing for next to no pauses in gameplay. While the level transitions typically required a reasonable amount of pre-planning on the part of the level designers, the seamlessness gave players the feeling of truly being in a continuous world. Additionally, players could backtrack over considerable distances in the game, allowing them to go back for items or equipment that they may have missed or wanted to save.

Half-Life was based on a heavily modified version of the original Quake engine, providing the game with a fully three-dimensional world, but the additions made by Valve made the singleplayer game many times more advanced that that of Quake. Colored lighting, the use of scripted animated sequences to advance story and heighten tension and the construction of both impressive indoor and outdoor environments made Half-Life a hallmark of the industry. Combined with the intriguing plot and the addition of an endgame choice, the game was a wild success. Further, the release of level design and other tools, called a Software Development Kit or SDK, turned Half-Life into a success in the online gaming world, spawning a number of third party modifications such
as Counter-Strike, Natural Selection and Day of Defeat.

The Future

While a number of titles have been released since Half-Life, including its widely acclaimed sequel, Half-Life 2, there has been surprisingly little advancement in the field of level design since Half-Life. Many other titles have adopted features that were present in Half-Life and made iterative improvements, while some titles have updated older methods of interaction, such as Deus Ex or System Shock 2. Still, the question remains regarding what level design and level designers are becoming.

The release of mapping tools to the general public has allowed the creation of hundreds of thousands of maps and collections of missions for a variety of FPS’s, beginning with Doom and continuing on with titles like Doom 3, Half-Life 2, Star Wars Jedi Knight II: Jedi Outcast and Halo 2. First Person Shooter titles have branched out from personal computers and onto popular consoles, with games such as Goldeneye for the Nintendo 64 andthe Halo series for Xbox, but the gameplay model has, by and large, remained the same. Some of the more popular modification teams have even been hired to do commercial work, such as the poorly received Gunman Chronicles, the product of a total conversion for Half-Life.

While the availability of the tools has given rise to new ranks of level designers, the job is constantly increasing in complexity. Early titles could have their levels designed by only one person in a few hours, as was the case with Wolfenstein 3D. Games such as Half-Life and Half-Life 2 now require team efforts, with designers specializing in lighting, weapon and enemy placement and the creation and implementation of scripted sequences to make the world come alive. It is highly likely that in the coming years we will see the emergence of a division of labor very similar to that of the film industry, with certain designers laying out architecture while others apply textures and still others place enemies, items and monsters. Valve Software itself noted that it has had to change the design process for its own levels, laying out architecture with a flat default orange texture in order to test gameplay and level flow before dedicating the resources to applying the necessary texture maps, lighting and other small touches that truly bring levels to life.

Level designers have come a long way from the early days of the first person shooter, but with each technological leap the necessary time, preplanning and design required to create a level has increased significantly. It is highly likely that just as the auteur game programmer has become extinct, so too will the auteur level designer, replaced instead by what Valve software refers to as “cabals”, teams of designers working in concert to bring a level to life. This is not limited to just FPS titles, since the growing complexity and open-ended gameplay of games like Grand Theft Auto: San Andreas and World of Warcraft require level designers to expand their skills far beyond that of simple geometry creation and lighting.

These design challenges raise important questions for the game development community regarding the methods and technologies that are being used to develop content for titles. Certain designers, such as Maxis’ Will Wright, advocate the use of procedural generation technology to allow algorithms to handle the bulk of content generation, a technique he plans to use in his upcoming game Spore. Valve appears to advocate the cabal design process, wherein they recognized that level gameplay and flow is the primary issue. Because of this, they chose to use their technique of texturing prototypes in a flat orange color in order to concentrate fully on gameplay and not be distracted by graphical concerns, a process that appears to have worked well for Half-Life 2.

However, perhaps it is not an issue of team size, but an issue of tool improvement. The level design tools that we have today are advanced, but likely have not advanced at the pace of the rendering engines themselves, so there is likely room for improvement both in function and usability. Could we alter the way the levels are created so that rapid prototyping could be made even easier? Which approach to level design is more robust, the additive techniques used in the Quake and Doom 3 engines, or the subtractive methods used by Unreal engine titles? Is there a combination of the two techniques that would work best? These are questions that must be answered so that the pace and advances of level design can keep up with the requirements that are being placed upon the level designers, particularly with a new generation of consoles and other hardware nearly upon us.


Article Start Previous Page 3 of 4 Next

Related Jobs

innogames
innogames — Hamburg, Germany
[12.04.20]

UI/UX Designer - Forge of Empires
innogames
innogames — Hamburg, Germany
[12.04.20]

Concept Artist - New Mobile Game
Insomniac Games
Insomniac Games — Burbank, California, United States
[12.03.20]

Senior Designer
Lawrence Technological University
Lawrence Technological University — Southfield, Michigan, United States
[12.03.20]

Assistant Professor of Game Design – Tenure-Track





Loading Comments

loader image