Gamasutra is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Gamasutra: The Art & Business of Making Gamesspacer
How Does In-Game Audio Affect Players?
View All     RSS
January 19, 2021
arrowPress Releases
January 19, 2021
Games Press
View All     RSS







If you enjoy reading this site, you might also want to check out these UBM Tech sites:


 

How Does In-Game Audio Affect Players?


April 18, 2012 Article Start Previous Page 3 of 3
 

Game 3

Illustration 8 shows a comparison of heart rates for the audio and no-audio groups while playing Game 3 (Amnesia: The Dark Descent). The graph shows that the audio group had a consistently higher heart rate throughout the game-play session. The audio and no-audio groups obtained maximum heart rates of 90bpm and 77bpm respectively, and minimum heart rate of heart rates of 74bpm and 52bpm, respectively. Further statistical analysis found the differences in heart rate to be significant (Mann-Whitney, p<0.001).

Illustration 9 shows a comparison of respiration rates throughout game-play for the audio and no-audio groups. The graph shows overall the audio group had a greater respiration rate (maximum rate of 27bpm and minimum rate of 10bpm) compared to the no-audio group (maximum 16bpm and minimum 6bpm). Statistical analysis found that the differences in respiration rate were significant (Mann-Whitney, p<0.001).


Illustration 8: Comparison of audio and no-audio groups' heart rate for Game 3


Illustration 9: Comparison of audio and no-audio groups' respiration rate for Game 3

Summary

Firstly, a summary of results: During Game 1, the audio group had a significantly higher heart rate and a slightly higher respiration rate compared to the no-audio group. During Game 2, the audio group had a significantly high heart rate and respiration rate than the no-audio group.

Finally, during Game 3 the audio group had significantly higher heart rate and respiration rate compared to the no-audio group. These findings suggest that the presence of audio in games can increase in player arousal, as shown by an increase in physical responses (heart rate and respiration rate).

Focusing on the games individually, starting with Game 1 (Osmos) the results show this game produced a low heart rate (68bpm) and lowest respiration rate (7bpm) for the audio group. While these values are low both were still higher than that produced by the no-audio group.

These values are low, most likely, because Osmos is a low-stress game. The levels participants were tasked with completing were not challenging, and the audio is relaxing -- therefore, participants did not express any frustration.

During Game 2 (FlatOut), the audio group produced the highest heart rate (91bpm) and a slightly higher respiration rate compared to the No-audio group. The rationale for these high values is that FlatOut is an exhilarating racing game, more so with audio (engine noise, crash sound effects, and background rock music). Furthermore, participant performance in the game may affect responses -- for example, if a player is winning, they may respond with excitement (increasing both heart and respiration rate), or if a player is losing they may become frustrated, also increasing heart and respiration rate.

Game 3 (Amnesia) best demonstrates the affect of audio in games. The audio group obtained significantly higher heart and respiration rates compared to the no-audio group during game play. This is more impressive given that in the section of game all participants played through, very little happens. There are no enemies and no fighting -- just exploration -- and the results suggest that audio can yet increase immersion in games.

Reviewing group responses to all games it shows the audio group produced a high maximum heart rate and respiration rate for all games (heart rate Game 1: 84bpm, Game 2: 91bpm and Game 3: 90bpm; respiration rate Game 1: 25bpm, Game 2: 24 and Game 3: 27bpm). The no-audio group produced consistent maximum heart rate values over the three games (Game 1: 78bpm, Game 2: 77bpm and Game 3: 77bpm). The difference in heart rates between the groups shows the effect audio in games has on players.

To further investigate the effect of audio in games another study could be conducted that utilizes the same methodology as the above study, but instead of using commercial games as stimuli could build a bespoke game environment for testing. The advantage of a bespoke testing environment is the ability to control almost everything. Such an environment could be used to investigate aspects such as quality or realism of audio and the responses of players.


Article Start Previous Page 3 of 3

Related Jobs

Insomniac Games
Insomniac Games — Burbank, California, United States
[01.18.21]

Senior Designer
innogames
innogames — Hamburg, Germany
[01.18.21]

Game Designer - New Mobile Game
innogames
innogames — Hamburg, Germany
[01.18.21]

UI Artist - Forge of Empires
Square Enix, Inc.
Square Enix, Inc. — El Segundo, California, United States
[01.15.21]

Senior Web Developer





Loading Comments

loader image